Saginaw Valley State University 2018 Math Olympics — Level II

- 1. Which of the following is the value of $\frac{2}{3} + \frac{1}{4} + \frac{2}{15} + \frac{1}{12} + \frac{2}{35} + \frac{1}{24} + \frac{2}{63} \cdot \cdot \cdot + \frac{2}{(2017)(2019)}$?
 - (a) $1 \frac{1}{(2018)(2019)}$ (b) $\frac{3}{2} \frac{4037}{(2018)(2019)}$ (c) $1 + \frac{1}{(2018)(2019)}$ (d) $\frac{2018}{2019}$ (e) None of the above
- 2. Function *f* is defined in the following way:

$$f(0) = 1$$

 $f(k) = \frac{f(k-1)}{1+f(k-1)}$ for $k \ge 1$

What is *f*(2018)?

- (a) $\frac{2017}{2018}$ (b) $\frac{1}{2019}$ (c) $\frac{2019}{2018}$ (d) $\frac{2018}{2019}$ (e) None of the above
- 3. How many positive divisors does $2^2 \cdot 3^3 \cdot 4^4 \cdot 5^5 \cdot 6^6 \cdot 7^7$ have?
 - (a) 5040 (b) 20160 (c) 8160 (d) 7200 (e) None of the above
- 4. $\log_7 5 + \log_{49} 3 =$
 - (a) $\log_7 5\sqrt{3}$ (b) $\log_7 45$
 - (c) log₄₉ 75 (d) Both (a) and (c) are correct
 - (e) Both (b) and (c) are correct
- 5. The solution to the equation $2^{x+3} = 4 \cdot 3^{2x}$ is:
 - (a) $\frac{3 \ln 2}{2 \ln 12 \ln 2}$ (b) $\frac{\ln 2}{\ln 4.5}$ (c) $\ln \left(\frac{4}{9}\right)$
 - (d) $3 \log_2 12$ (e) None of the above
- 6. Two cards are delt from a standard 52 card deck and placed side by side on a table. What is the probability that the first card is a face card (a jack, a queen or a king) and the second card is a king?
 - (a) $\frac{3}{169}$ (b) $\frac{4}{13}$ (c) $\frac{4}{221}$ (d) $\frac{3}{221}$ (e) None of the above

2018 SVSU Math Olympics

9. How many positive 5 digit integers can be formed using only the digits 2, 0, 1 and 8 when in each number, each of the digits is used at least once?

(a) 120 (b) 180 (c) 200 (d) 240 (e) None of the above

- 10. What is the perimeter of a regular hexagon whose area is $18\sqrt{3}$ square units?
 - (a) 12 units (b) $12\sqrt{2}$ units (c) $12\sqrt{3}$ units
 - (d) $(6\sqrt{3} + 4)$ units (e) None of the above
- 11. Suppose

$$1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \dots = 2018$$

and

$$1 + \frac{1}{y} + \frac{1}{y^2} + \frac{1}{y^3} + \dots = 2019.$$

What is y/x?

(a)	$\frac{2019}{2018}$	(b) $1 - \frac{1}{2018^2}$	(c) $\frac{2017}{2019}$	(d) $1 - \frac{1}{2019^2}$
(e)	$\frac{2018 \cdot 2019}{2017 \cdot 2020}$			

12. Let *n* be a positive integer such that

$$\frac{n^3 + 6n^2 + 25n + 391}{n+4}$$

is an integer. How many possible values of *n* are there?

(a) 0 (b) 2 (c) 3 (d) 4 (e) There are infinitely many possibilities for n

13. When multiplied out,

$$13! = 622_{020800}$$

What is the missing digit?

(a) 3 (b) 5 (c) 7 (d) 9 (e) None of the above

14. Which of the following does *not* have a horizontal asymptote of y = -1?

(a) $y = e^{-3x} - 1$ (b) $y = \frac{3 - \ln x}{2 + \ln x}$ (c) $y = \log_2 x - 1$ (d) $y = \frac{1}{x} - 1$ (e) $y = 3^{-x} - 1$

15. Which of the following is equal to $\cos\left(\frac{\pi}{12}\right)$?

(a)
$$\frac{\sqrt{2}}{4}$$
 (b) $\frac{\sqrt{3} + \sqrt{2}}{4}$ (c) $\frac{\sqrt{6} + \sqrt{2}}{4}$ (d) $\frac{\sqrt{6} - \sqrt{2}}{4}$ (e) None of the above

16. Which of the following is the largest?

(a)
$$\cos \frac{\pi}{6}$$
 (b) $\log_2 1$ (c) $\log_2 5$ (d) $\tan \frac{\pi}{4}$ (e) $\sqrt{2}$

2018 SVSU Math Olympics

- 17. How many ways are there to arange five A's and fourteen B's if each A must be immediately followed by a B?
 - (a) $\binom{19}{5} + \binom{19}{4}$ (b) $\binom{19}{5}$ (c) $\binom{14}{5} \cdot \binom{14}{9}$ (d) $\binom{14}{5}$ (e) None of the above
- 18. A circle, an equilateral triangle and a square each have perimeter 12π . Which of the following give the three shapes in ascending order by area?

(a)
$$\triangle$$
, \bigcirc , \square (b) \bigcirc , \triangle , \square (c) \square , \triangle , \bigcirc (d) \triangle , \square , \bigcirc (e) \bigcirc , \square , \triangle

- 19. A car has wheels with radii 40cm. How many revolutions per minute must a wheel turn so that the car travels 50km/h?
 - (a) $\frac{6520}{\pi}$ (b) $\frac{3125}{3\pi}$ (c) $\frac{6520}{3}$ (d) $\frac{3125}{3}$ (e) None of the above
- 20. The point (*x*, *y*) lies on a circle with radius 3 and center at the origin. Find the maximal value of $x^2 + 3y^2 + 4x$.
 - (a) 22 (b) 24 (c) 36 (d) 27 (e) 29
- 21. In the diagram, A, B, ..., G refer to successive states through which a traveler must pass in order to get from A to G, moving from left to right. A path consists of a sequence of line segments leading from one state to the next. A path must always move to the next state until reaching state G. Determine the number of possible paths from A to G.

2018 SVSU Math Olympics

How many 10-digit strings of zeros and ones are there that do not contain any consecutive zeros?						
(a) 144	(b) 512	(c) 513	(d) 1280	(e) None of the above		
3. Find the value of $\sin(2\theta)$ if $\sin \theta + \cos \theta = 0.8$.						
(a) 36	(b) 16	(c) 0	(d) .16	(e) .36		
	How many fizeros? (a) 144 Find the val (a)36	How many 10-digit strin zeros? (a) 144 (b) 512 Find the value of sin(2 <i>θ</i>) (a)36 (b)16	How many 10-digit strings of zeros zeros? (a) 144 (b) 512 (c) 513 Find the value of $sin(2\theta)$ if $sin \theta + co$ (a) 36 (b) 16 (c) 0	How many 10-digit strings of zeros and ones are zeros? (a) 144 (b) 512 (c) 513 (d) 1280 Find the value of $sin(2\theta)$ if $sin \theta + cos \theta = 0.8$. (a) 36 (b) 16 (c) 0 (d) $.16$		

24. The numbers x and y satisfy $2^x = 15$ and $15^y = 32$. What is the value of xy?

(e) None of the above **(a)** 3 **(b)** 4 **(c)** 5 **(d)** 6

25. Three adjacent squares with increasing side lengths sit on line l as shown, with line n passing through their top left corners. If the two smaller squares have side lengths of 4 and 6, what is the side length of the largest square?

(a) 8

(b) $\frac{26}{3}$ **(c)** 9 **(d)** 10 (e) None of the above