Saginaw Valley State University 2018 Math Olympics - Level II

1. Which of the following is the value of $\frac{2}{3}+\frac{1}{4}+\frac{2}{15}+\frac{1}{12}+\frac{2}{35}+\frac{1}{24}+\frac{2}{63} \cdots+\frac{2}{(2017)(2019)}$?
(a) $1-\frac{1}{(2018)(2019)}$
(b) $\frac{3}{2}-\frac{4037}{(2018)(2019)}$
(c) $1+\frac{1}{(2018)(2019)}$
(d) $\frac{2018}{2019}$
(e) None of the above
2. Function f is defined in the following way:

$$
\begin{aligned}
& f(0)=1 \\
& f(k)=\frac{f(k-1)}{1+f(k-1)} \text { for } k \geq 1
\end{aligned}
$$

What is $f(2018) ?$
(a) $\frac{2017}{2018}$
(b) $\frac{1}{2019}$
(c) $\frac{2019}{2018}$
(d) $\frac{2018}{2019}$
(e) None of the above
3. How many positive divisors does $2^{2} \cdot 3^{3} \cdot 4^{4} \cdot 5^{5} \cdot 6^{6} \cdot 7^{7}$ have?
(a) 5040
(b) 20160
(c) 8160
(d) 7200
(e) None of the above
4. $\log _{7} 5+\log _{49} 3=$
(a) $\log _{7} 5 \sqrt{3}$
(b) $\log _{7} 45$
(c) $\log _{49} 75$
(d) Both (a) and (c) are correct
(e) Both (b) and (c) are correct
5. The solution to the equation $2^{x+3}=4 \cdot 3^{2 x}$ is:
(a) $\frac{3 \ln 2}{2 \ln 12-\ln 2}$
(b) $\frac{\ln 2}{\ln 4.5}$
(c) $\ln \left(\frac{4}{9}\right)$
(d) $3-\log _{2} 12$
(e) None of the above
6. Two cards are delt from a standard 52 card deck and placed side by side on a table. What is the probability that the first card is a face card (a jack, a queen or a king) and the second card is a king?
(a) $\frac{3}{169}$
(b) $\frac{4}{13}$
(c) $\frac{4}{221}$
(d) $\frac{3}{221}$
(e) None of the above
7. A decorative coaster has a design of five circles that are tangent to each other, as shown. The largest circle has radius 2 inches. The two smaller circles each have radius 1 inch. Find the radius of the smallest (filled) circle.
(a) $1 / 4$
(b) $1 / \pi$
(c) $10 / 3$
(d) $1 / 3$
(e) None of the above
8. What are the last three digits (the three least significant dig-
 its) in 2018^{5} ?
(a) 368
(b) 568
(c) 768
(d) 968
(e) None of the above
9. How many positive 5 digit integers can be formed using only the digits $2,0,1$ and 8 when in each number, each of the digits is used at least once?
(a) 120
(b) 180
(c) 200
(d) 240
(e) None of the above
10. What is the perimeter of a regular hexagon whose area is $18 \sqrt{3}$ square units?
(a) 12 units
(b) $12 \sqrt{2}$ units
(c) $12 \sqrt{3}$ units
(d) $(6 \sqrt{3}+4)$ units
(e) None of the above
11. Suppose

$$
1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\cdots=2018
$$

and

$$
1+\frac{1}{y}+\frac{1}{y^{2}}+\frac{1}{y^{3}}+\cdots=2019
$$

What is y / x ?
(a) $\frac{2019}{2018}$
(b) $1-\frac{1}{2018^{2}}$
(c) $\frac{2017}{2019}$
(d) $1-\frac{1}{2019^{2}}$
(e) $\frac{2018 \cdot 2019}{2017 \cdot 2020}$
12. Let n be a positive integer such that

$$
\frac{n^{3}+6 n^{2}+25 n+391}{n+4}
$$

is an integer. How many possible values of n are there?
(a) 0
(b) 2
(c) 3
(d) 4
(e) There are infinitely many possibilities for n
13. When multiplied out,

$$
13!=622 _020800
$$

What is the missing digit?
(a) 3
(b) 5
(c) 7
(d) 9
(e) None of the above
14. Which of the following does not have a horizontal asymptote of $y=-1$?
(a) $y=e^{-3 x}-1$
(b) $y=\frac{3-\ln x}{2+\ln x}$
(c) $y=\log _{2} x-1$
(d) $y=\frac{1}{x}-1$
(e) $y=3^{-x}-1$
15. Which of the following is equal to $\cos \left(\frac{\pi}{12}\right)$?
(a) $\frac{\sqrt{2}}{4}$
(b) $\frac{\sqrt{3}+\sqrt{2}}{4}$
(c) $\frac{\sqrt{6}+\sqrt{2}}{4}$
(d) $\frac{\sqrt{6}-\sqrt{2}}{4}$
(e) None of the above
16. Which of the following is the largest?
(a) $\cos \frac{\pi}{6}$
(b) $\log _{2} 1$
(c) $\log _{2} 5$
(d) $\tan \frac{\pi}{4}$
(e) $\sqrt{2}$
17. How many ways are there to arange five A's and fourteen B's if each A must be immediately followed by a B?
(a) $\binom{19}{5}+\binom{19}{4}$
(b) $\binom{19}{5}$
(c) $\binom{14}{5} \cdot\binom{14}{9}$
(d) $\binom{14}{5}$
(e) None of the above
18. A circle, an equilateral triangle and a square each have perimeter 12π. Which of the following give the three shapes in ascending order by area?
(a) $\triangle, \bigcirc, \square$
(b)
$\bigcirc, \triangle, \square$
(c) $\square, \triangle, \bigcirc$
(d) \qquad
(e)

19. A car has wheels with radii 40 cm . How many revolutions per minute must a wheel turn so that the car travels $50 \mathrm{~km} / \mathrm{h}$?
(a) $\frac{6520}{\pi}$
(b) $\frac{3125}{3 \pi}$
(c) $\frac{6520}{3}$
(d) $\frac{3125}{3}$
(e) None of the above
20. The point (x, y) lies on a circle with radius 3 and center at the origin. Find the maximal value of $x^{2}+3 y^{2}+4 x$.
(a) 22
(b) 24
(c) 36
(d) 27
(e) 29
21. In the diagram, $\mathrm{A}, \mathrm{B}, \ldots, \mathrm{G}$ refer to successive states through which a traveler must pass in order to get from A to G, moving from left to right. A path consists of a sequence of line segments leading from one state to the next. A path must always move to the next state until reaching state G . Determine the number of possible paths from A to G .
A
B
C
D
E
F G

(a) 20
(b) 23
(c) 24
(d) 25
(e) 30
22. How many 10 -digit strings of zeros and ones are there that do not contain any consecutive zeros?
(a) 144
(b) 512
(c) 513
(d) 1280
(e) None of the above
23. Find the value of $\sin (2 \theta)$ if $\sin \theta+\cos \theta=0.8$.
(a) -.36
(b) -.16
(c) 0
(d) . 16
(e) .36
24. The numbers x and y satisfy $2^{x}=15$ and $15^{y}=32$. What is the value of $x y$?
(a) 3
(b) 4
(c) 5
(d) 6
(e) None of the above
25. Three adjacent squares with increasing side lengths sit on line l as shown, with line n passing through their top left corners. If the two smaller squares have side lengths of 4 and 6 , what is the side length of the largest square?
(a) 8

(b) $\frac{26}{3}$
(c) 9
(d) 10
(e) None of the above

