SAGINAW VALLEY STATE UNIVERSITY 2015 MATH OLYMPICS LEVEL I

1. The value of $\frac{6}{(\sqrt{\sqrt{9}-\sqrt{3}})^2}$ is

(a) 1 (b) $3-\sqrt{3}$ (c) $3+\sqrt{3}$ (d) $\frac{6}{3+\sqrt{3}}$ (e) $6(3+\sqrt{3})$

2. Suppose t $f(-1) = 2$. Here	that $f(n) = 2j$ Evaluate $f(2)$.	f(n+1) - f(n+1)	(-1) for all	integers n and $f(1) = 4$ and
(a) 1	(b) 2	(c) 3	(d) 4	(e) 5
	_	_		of all points (x, y) such that I the distance from (x, y) to
(a) $(x^2 + y^2)$				$8y^2 - 8x^2 + 12 = 0$
(c) $x^4 - 8x^2$ (e) none of t		(d) $(x^2 +$	$(y^2)^2 + 8(y^2 - y^2)^2 + 8(y^2 - y^2$	$-x^2) = 0$
(e) none or t	ne above			
				wo additional integers, s and hat is the average of s and t ?
(a) 90	(b) 80	(c) 70	(d) 60	(e) none of the above
5. What is the	he largest prin	ne divisor of 2^1	-7 - 32?	
(a) 11	(b) 13	(c) 19	(d) 23	(e) 29
				$\sqrt{2^3 \times 5 \times p}$ is an integer?
(a) 1	(b) 2	(c) 5	(d) 10	(e) 20
4 of those 7 li A total of 8 of and olives by	ke both pepper of the friends li t no peppero	roni and mush ke mushrooms ni. Only 1 pe	cooms, while and of those erson likes on	like pepperoni on their pizza, 3 of those 4 like olives as well. 8, 2 of them like mushrooms ly olives. How many of the on their pizza?

(d) None of them

(e) none of the above

(a) 13

(b) 7 **(c)** 2

SVSU 2015 Math Olympics			Level 1-page 2 of 4	
of the bullet hitting the	e target comes back	to the person	2. 9 seconds later the sound in firing the shot. If we take 7 far away is the target?	
(a) 100 meters(d) 900 meters	(e) none of the ab	` ,	meters	
9. If $f(x) = \frac{x^2+1}{x^2-1}$, then	$f\left(\frac{1}{x}\right)$ is equal to:			
(a) $f(x)$ (b) $-f(x)$	(c) $-\frac{1}{f(x)}$	(d) 1	(e) none of the above	

10. A standard playing card deck has 52 cards made up of 4 different suits with 13 kinds of cards (numbered 1 or "ace" through 10 and three face cards) in each suit. What is the minimum number of cards that must be drawn from a randomly shuffled deck in order to be sure of getting three cards of the same suit?

- (a) 9 **(b)** 13 (c) 27 (d) 42 (e) none of the above
- 11. Maureen runs a catering service where she gives parties for a flat rate of \$600 for 50 guests or less. For any 5 guests over 50 the rate drops by 50 cents per person. What number of guests will maximize her revenue?
- (a) 600 **(b)** 50 (c) 60 (d) 85 (e) none of the above
- 12. A chemist has three bottles, each containing a mixture of acid and water: bottle A contains 40 g of which 10% is acid, bottle B contains 50 g of which 20% is acid, and bottle C contains 50 g of which 30% is acid. She uses some of the mixture from each of the bottles to create a mixture with mass 60 g of which 25% is acid. Then she mixes the remaining contents of the bottles to create a new mixture. What percentage of the new mixture is acid?
- (c) 15.5% (d) 25% (a) 20% **(b)** 17.5% (e) none of the above
- 13. Four years ago, Diane was three times as old as Jean was. In five years, Diane will be twice as old as Jean will be. What is the sum of the ages of Diane and Jean?
- (c) 42 (d) 44 (a) 25 **(b)** 32 **(e)** 54

5 V 5 U 2013 Math Olympics				Level 1-page 5 of 4	
hands with	each other pers		woman shakes ha	party, each man	
(a) 49	(b) 70	(c) 91	(d) 133	(e) 182	
	that $p(x) = (x + 1)$		$(x^3 + (x-5)(x^3 +$	(2x-3), what is t	he sum

(e) p(x) = 0 has no solution

16. Given that (x,y) satisfies $x^2 + y^2 = 9$, what is the largest possible value of $x^2 + 3y^2 + 4x$?

(a) 22 **(b)** 24 (c) 36 (d) 27 **(e)** 29

17. Mr. and Mrs. Alpha, Mr. and Mrs. Beta, and Mr. and Mrs. Gamma are standing in a line. How many ways are there line them up so that none of them are standing next to their spouse?

(a) 144 **(b)** 240 (c) 288 **(d)** 432 (e) none of the above

18. The sides of a right triangle are a, 2a + 2d and 2a + 3d, with a and d both positive. The ratio of a to d is:

(a) 5:1 **(b)** 27:2 (c) 4:1 (d) 1:5 (e) none of the above

19. Let f be a function defined on positive integers that satisfies f(k+2) = 4f(k). Which of the following could be an equation of f?

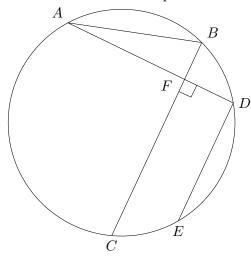
(c) $f(k) = \frac{3}{4}(2)^k + \frac{1}{4}(-2)^k$ (e) none of the above **(b)** f(k) = 4k(a) $f(k) = 4^k$ (d) $f(k) = \frac{1}{2}(4)^k - \frac{1}{2}(-4)^k$

20. The midpoints of the sides of a triangle are (1,1), (4,3), and (3,5). Find the

area of the triangle. (d) 20 (e) 22 (a) 14 **(b)** 16 **(c)** 18

21. The side lengths of an equilateral triangle and a square are integers. If the triangle and the square have the same perimeter, which of the following is a possible side length of the triangle?

(a) 1 **(b)** 10 (c) 18 **(d)** 20 (e) 25 **22.** If $f(x) = ax^2 + bx + c$, and if the y-intercept of f is 1 and the x-intercepts of f are 2 and 3, then a + b + c =


- (a) 2
- **(b)** 6
- (c) $\frac{1}{3}$
- (d) $\frac{5}{3}$
- (e) none of the above

23. In the diagram, the rectangle is divided into nine smaller rectangles. The areas of five of these rectangles are given. Determine the area of the rectangle labelled R.

3	1	
	2	R
5		10

- (a) 30
- **(b)** 20
- (c) 15
- (d) 14
- **(e)** 12

24. In the diagram, AB and BC are chords of the circle with AB < BC. If D is the point on the circle such that AD is perpendicular to BC and E is the point on the circle such that DE is parallel to BC, what is $\angle EAC + \angle ABC = ?$

- (a) 60°
- **(b)** 75°
- (c) 90°
- (d) 105°
- **(e)** 120°

25. For how many integers n, with $2 \le n \le 80$, is $\frac{(n-1)(n)(n+1)}{8}$ equal to an integer? (a) 10 (b) 20 (c) 59 (d) 39 (e) 49